As I discovered while I continued that line of reporting, building new nuclear plants isn’t so simple or so fast. And as my colleague David Rotman lays out in his story for the package, the AI boom could wind up relying on another energy source: fossil fuels. So what’s going to power AI? Let’s get into it.
When we started talking about this big project on AI and energy demand, we had a lot of conversations about what to include. And from the beginning, the climate team was really focused on examining what, exactly, was going to be providing the electricity needed to run data centers powering AI models. As we wrote in the main story:
“A data center humming away isn’t necessarily a bad thing. If all data centers were hooked up to solar panels and ran only when the sun was shining, the world would be talking a lot less about AI’s energy consumption.”
But a lot of AI data centers need to be available constantly. Those that are used to train models can arguably be more responsive to the changing availability of renewables, since that work can happen in bursts, any time. Once a model is being pinged with questions from the public, though, there needs to be computing power ready to run all the time. Google, for example, would likely not be too keen on having people be able to use its new AI Mode only during daylight hours.
Solar and wind power, then, would seem not to be a great fit for a lot of AI electricity demand, unless they’re paired with energy storage—and that increases costs. Nuclear power plants, on the other hand, tend to run constantly, outputting a steady source of power for the grid.
As you might imagine, though, it can take a long time to get a nuclear power plant up and running.
Large tech companies can help support plans to reopen shuttered plants or existing plants’ efforts to extend their operating lifetimes. There are also some existing plants that can make small upgrades to improve their output. I just saw this news story from the Tri-City Herald about plans to upgrade the Columbia Generating Station in eastern Washington—with tweaks over the next few years, it could produce an additional 162 megawatts of power, over 10% of the plant’s current capacity.
But all that isn’t going to be nearly enough to meet the demand that big tech companies are claiming will materialize in the future. (For more on the numbers here and why new tech isn’t going to come online fast enough, check out my full story.)
Source link
#power #AIs #growth