arXiv:2410.11355v1 Announce Type: cross
Abstract: Labeling datasets is a noteworthy challenge in machine learning, both in terms of cost and time. This research, however, leverages an efficient answer. By exploring label propagation in semi-supervised learning, we can significantly reduce the number of labels required compared to traditional methods. We employ a transductive label propagation method based on the manifold assumption for text classification. Our approach utilizes a graph-based method to generate pseudo-labels for unlabeled data for the text classification task, which are then used to train deep neural networks. By extending labels based on cosine proximity within a nearest neighbor graph from network embeddings, we combine unlabeled data into supervised learning, thereby reducing labeling costs. Based on previous successes in other domains, this study builds and evaluates this approach’s effectiveness in sentiment analysis, presenting insights into semi-supervised learning.
Source link
#Reducing #Labeling #Costs #Sentiment #Analysis #SemiSupervised #Learning
Unlock the potential of cutting-edge AI solutions with our comprehensive offerings. As a leading provider in the AI landscape, we harness the power of artificial intelligence to revolutionize industries. From machine learning and data analytics to natural language processing and computer vision, our AI solutions are designed to enhance efficiency and drive innovation. Explore the limitless possibilities of AI-driven insights and automation that propel your business forward. With a commitment to staying at the forefront of the rapidly evolving AI market, we deliver tailored solutions that meet your specific needs. Join us on the forefront of technological advancement, and let AI redefine the way you operate and succeed in a competitive landscape. Embrace the future with AI excellence, where possibilities are limitless, and competition is surpassed.