View a PDF of the paper titled ParallelComp: Parallel Long-Context Compressor for Length Extrapolation, by Jing Xiong and 9 other authors
Abstract:Extrapolating ultra-long contexts (text length >128K) remains a major challenge for large language models (LLMs), as most training-free extrapolation methods are not only severely limited by memory bottlenecks, but also suffer from the attention sink, which restricts their scalability and effectiveness in practice. In this work, we propose ParallelComp, a parallel long-context compression method that effectively overcomes the memory bottleneck, enabling 8B-parameter LLMs to extrapolate from 8K to 128K tokens on a single A100 80GB GPU in a training-free setting. ParallelComp splits the input into chunks, dynamically evicting redundant chunks and irrelevant tokens, supported by a parallel KV cache eviction mechanism. Importantly, we present a systematic theoretical and empirical analysis of attention biases in parallel attention-including the attention sink, recency bias, and middle bias-and reveal that these biases exhibit distinctive patterns under ultra-long context settings. We further design a KV cache eviction technique to mitigate this phenomenon. Experimental results show that ParallelComp enables an 8B model (trained on 8K context) to achieve 91.17% of GPT-4’s performance under ultra-long contexts, outperforming closed-source models such as Claude-2 and Kimi-Chat. We achieve a 1.76x improvement in chunk throughput, thereby achieving a 23.50x acceleration in the prefill stage with negligible performance loss and pave the way for scalable and robust ultra-long contexts extrapolation in LLMs. We release the code at this https URL.
Submission history
From: Jing Xiong [view email]
[v1]
Thu, 20 Feb 2025 07:10:43 UTC (2,133 KB)
[v2]
Mon, 9 Jun 2025 09:48:43 UTC (2,003 KB)
Source link
#Parallel #LongContext #Compressor #Length #Extrapolation