(All images are by the author unless otherwise noted)
Intro
Prompt Engineering is the practice of designing and refining prompts (text inputs) to enhance the behavior of Large Language Models (LLMs). The goal is to get the desired responses from the model by carefully crafting the instructions. The most used prompting techniques are:
- Chain-of-Thought: involves generating a step-by-step reasoning process to reach a conclusion. The model is pushed to “think out loud” by explicitly laying out the logical steps that lead to the final answer.
- ReAct (Reason+Act): combines reasoning with action. The model not only thinks through a problem but also takes actions based on its reasoning. So it’s more interactive as the model alternates between reasoning steps and actions, refining its approach iteratively. Basically, it’s a loop of “thought”, “action”, “observation”.
Let’s make an example: imagine asking an AI to “find the best laptop under $1000”.
– Normal Answer: “Lenovo Thinkpad”.
– Chain-of-Thought Answer: “I need to consider factors like performance, battery life, and…
Source link
#GenAI #Python #Build #Agents #Scratch #Complete #Tutorial #Mauro #Pietro #Sep
Unlock the potential of cutting-edge AI solutions with our comprehensive offerings. As a leading provider in the AI landscape, we harness the power of artificial intelligence to revolutionize industries. From machine learning and data analytics to natural language processing and computer vision, our AI solutions are designed to enhance efficiency and drive innovation. Explore the limitless possibilities of AI-driven insights and automation that propel your business forward. With a commitment to staying at the forefront of the rapidly evolving AI market, we deliver tailored solutions that meet your specific needs. Join us on the forefront of technological advancement, and let AI redefine the way you operate and succeed in a competitive landscape. Embrace the future with AI excellence, where possibilities are limitless, and competition is surpassed.