...

Cross-cultural value alignment frameworks for responsible AI governance: Evidence from China-West comparative analysis



arXiv:2511.17256v1 Announce Type: cross
Abstract: As Large Language Models (LLMs) increasingly influence high-stakes decision-making across global contexts, ensuring their alignment with diverse cultural values has become a critical governance challenge. This study presents a Multi-Layered Auditing Platform for Responsible AI that systematically evaluates cross-cultural value alignment in China-origin and Western-origin LLMs through four integrated methodologies: Ethical Dilemma Corpus for assessing temporal stability, Diversity-Enhanced Framework (DEF) for quantifying cultural fidelity, First-Token Probability Alignment for distributional accuracy, and Multi-stAge Reasoning frameworK (MARK) for interpretable decision-making. Our comparative analysis of 20+ leading models, such as Qwen, GPT-4o, Claude, LLaMA, and DeepSeek, reveals universal challenges-fundamental instability in value systems, systematic under-representation of younger demographics, and non-linear relationships between model scale and alignment quality-alongside divergent regional development trajectories. While China-origin models increasingly emphasize multilingual data integration for context-specific optimization, Western models demonstrate greater architectural experimentation but persistent U.S.-centric biases. Neither paradigm achieves robust cross-cultural generalization. We establish that Mistral-series architectures significantly outperform LLaMA3-series in cross-cultural alignment, and that Full-Parameter Fine-Tuning on diverse datasets surpasses Reinforcement Learning from Human Feedback in preserving cultural variation…

Source link

#Crosscultural #alignment #frameworks #responsible #governance #Evidence #ChinaWest #comparative #analysis